PEMADAM KEBAKARAN
A. Pengetahuan Dasar Damkar
Sebelum kita dapat melakukan usaha penanggulangan kebakaran, adalah wajar apabila kita perlu untuk mengetahui dan mengenal terlebih dahulu apa dan bagaimanakah kebakaran itu. Setelah itu maka kita akan menyadari bahwa peristiwa/masalah kebakaran sesungguhnya merupakan masalah yang menjadi ancaman bagi semua orang, baik disadari ataupun tidak.
Kebakaran di Indonesia dibagi menjadi tiga kelas, yaitu:
1. Kelas A
Kebakaran yang disebabkan oleh benda-benda padat, misalnya kertas, kayu, plastik, karet, busa dan lain-lainnya. Media pemadaman kebakaran untuk kelas ini berupa: air, pasir, karung goni yang dibasahi, dan Alat Pemadam Kebakaran (APAR) atau racun api tepung kimia kering.
2. Kelas B
Kebakaran yang disebabkan oleh benda-benda mudah terbakar berupa cairan, misalnya bensin, solar, minyak tanah, spirtus, alkohol dan lain-lainnya. Media pemadaman kebakaran untuk kelas ini berupa: pasir dan Alat Pemadam Kebakaran (APAR) atau racun api tepung kimia kering. Dilarang memakai air untuk jenis ini karena berat jenis air lebih berat dari pada berat jenis bahan di atas sehingga bila kita menggunakan air maka kebakaran akan melebar kemana-mana.
3. Kelas C
Kebakaran yang disebabkan oleh listrik. Media pemadaman kebakaran untuk kelas ini berupa: Alat Pemadam Kebakaran (APAR) atau racun api tepung kimia kering. Matikan dulu sumber listrik agar kita aman dalam memadamkan kebakaran
B. Prinsip Pemadaman Kebakaran
Kebakaran adalah suatu nyala api, baik kecil atau besar pada tempat yang tidak kita hendaki, merugikan dan pada umumnya sukar dikendalikan. Api terjadi karena persenyawaan dari:
• Sumber panas, seperti energi elektron (listrik statis atau dinamis), sinar matahari, reaksi kimia dan perubahan kimia.
• Benda mudah terbakar, seperti bahan-bahan kimia, bahan bakar, kayu, plastik dan sebagainya.
• Oksigen (tersedia di udara)
Apabila ketiganya bersenyawa maka akan terjadi api. Dalam pencegahan terjadinya kebakaran kita harus bisa mengontrol Sumber panas dan Benda mudah terbakar, misalnya Dilarang merokok ketika Sedang melakukan pengisian bahan Bakar, Menyimpan barang-barang yang mudah terbakar ditempat aman, dan sebagainya.
Apabila sudah terjadi kebakaran maka langkah kita adalah menghilangkan adanya Oksigen dalam kebakaran tersebut. Contoh mudahnya seperti ketika kita menghidupkan lilin, lalu coba kita tutup dengan gelas maka api pada lilin tersebut akan mati karena oksigen yang berada di luar gelas tidak dapat masuk dan oksigen yang berada dalam gelas berubah menjadi Karbon Dioksida (CO2) yang mematikan api. Ketika kita memadamkan kebakaran dengan mengunakan APAR, karung goni yang basah dan pasir yang terjadi adalah kita mengisolasi adanya oksigen dalam api tersebut asal semua permukaan api tertutupi oleh ketiga media pemadaman tersebut dan api akan mati seperti lilin yang kita tutup memakai gelas tadi. Bila kita menggunakan air sebagai media pemadaman maka terjadi reaksi pendinginan panas dan isolasi oksigen dari kebakaran tersebut.
C. Peralatan Pencegahan Kebakaran
• APAR / Fire Extinguishers / Racun Api
Peralatan ini merupakan peralatan reaksi cepat yang multi guna karena dapat dipakai untuk jenis kebakaran A,B dan C. Peralatan ini mempunyai berbagai ukuran beratnya, sehingga dapat ditempatkan sesuai dengan besar-kecilnya resiko kebakaran yang mungkin timbul dari daerah tersebut, misalnya tempat penimbunan bahan bakar terasa tidak rasional bila di situ kita tempatkan racun api dengan ukuran 1,2 Kg dengan jumlah satu tabung. Bahan yang ada dalam tabung pemadam api tersebut ada yang dari bahan kimia kering, foam / busa dan CO2, untuk Halon tidak diperkenankan dipakai di Indonesia.
• Hydran
Ada 3 jenis hydran, yaitu hydran gedung, hydran halaman dan hydran kota, sesuai namanya hydran gedung ditempatkan dalam gedung, untuk hydran halaman ditempatkan di halaman, sedangkan hydran kota biasanya ditempatkan pada beberapa titik yang memungkinkan Unit Pemadam Kebakaran suatu kota mengambil cadangan air.
• Detektor Asap / Smoke Detector
Peralatan yang memungkinkan secara otomatis akan memberitahukan kepada setiap orang apabila ada asap pada suatu daerah maka alat ini akan berbunyi, khusus untuk pemakaian dalam gedung.
• Fire Alarm
Peralatan yang dipergunakan untuk memberitahukan kepada setiap orang akan adanya bahaya kebakaran pada suatu tempat
• Sprinkler
Peralatan yang dipergunakan khusus dalam gedung, yang akan memancarkan air secara otomatis apabila terjadi pemanasan pada suatu suhu tertentu pada daerah di mana ada sprinkler tersebut
D. Pencegahan Kebakaran
Setelah kita mengetahui pengklasifikasian, prinsip pemadaman dan perlengkapan pemadaman suatu kebakaran maka kita harus bisa mengelola kesemuanya itu menjadi suatu sistem manajemen/pengelolaan pencegahan bahaya kebakaran.
Kita mengambil contoh dari pengelolaan pencegahan kebakaran pada bangunan tinggi.
1. Identifikasi bahaya yang dapat mengakibatkan kebakaran pada gedung itu.
a. Bahan Mudah Terbakar, seperti karpet, kertas, karet, dan lain-lain
b. Sumber Panas, seperti Listrik, Listrik statis, nyala api rokok dan lain-lain
2. Penilaian Resiko
Resiko tinggi karena merupakan bangunan tinggi yang banyak orang
3. Monitoring
Inspeksi Listrik, Inspeksi Bangunan, Inspeksi Peralatan Pemadam Kebakaran, Training, Fire Drill / Latihan Kebakaran dan lain-lain
4. Recovery / Pemulihan
Emergency Response Plan / Rencana Tindakan Tanggap Darurat, P3K, Prosedur-Prosedur, dan lain-lain.
Kita semua tahu bahwa untuk dapat menghadapi dan mengalahkan musuh, kita harus tahu segala hal tentang musuh kita kekuatan, kelemahan, strategi perang, dan lainnya. Memiliki gambaran tentang kemungkinan aksi yang akan dilakukan oleh musuh, membuat kita dapat membuat rencana untuk menga-tasi aksi tersebut, dan lebih baik lagi melakukan pencegahan agar aksi tersebut tidak dapat berjalan. Demikian juga apabila kita mengahadapi masalah kebakaran, kita harus tahu tentang bagaimanakah api dapat terjadi, bagaimana api dapat menyebar, apa yang dapat menimbulkan api, bagaimana mencegah api timbul, dan banyak lagi, sehingga kita siap menghadapi musuh kita semua, yaitu kebakaran.
a. Pembakaran
Pembakaran dan api adalah dua kata yang akan selalu berhubungan dan dalam ilmu kebakaran dua kata tersebut sudah menjadi tak terpisahkan.
Pembakaran/api adalah peristiwa proses reaksi oksidasi cepat yang biasanya menghasilkan panas dan cahaya (energi panas dan energi cahaya). Selanjutnya apakah reaksi oksidasi itu?; Dalam konteks masalah kebakaran dapat dikatakan bahwa reaksi oksidasi adalah reaksi pengikatan unsur oksigen oleh reduktor/pereduksi (bahan bakar). Sedang dalam konteks lebih luas, dalam ilmu kimia, reaksi oksidasi didefinisikan sebagai reaksi pemberian elektron oleh oksidator/ pengoksidasi kepada reduktor/pereduksi.
Di atas telah disebutkan bahwa pembakaran/api adalah peristiwa oksidasi cepat, berarti ada reaksi oksidasi lambat. Untuk rekasi oksidasi lambat sebagai contohnya adalah peristiwa perkaratan besi. Satu hal yang perlu di pahami adalah bahwa hanya gas yang dapat terbakar. Jadi bahan bakar dengan bentuk fisik padatan dan cairan sebelum ia dapat terbakar ia harus dirubah dahulu ke bentuk fisik gas. Untuk bahan bakar padat harus mengalami pyrolysis, sehingga ter-bentuk gas-gas yang lebih seder-hana yang akan terbakar. Sedang untuk bahan bakar bentuk cairan oleh panas akan diuapkan, lalu uap bahan bakar tadi yang akan terbakar.
Kembali ke masalah kebakaran ada peristiwa yang sering terjadi seiring dengan kebakaran, yaitu ledakan/explosion. Ledakan/explosion adalah peristiwa oksidasi yang sangat cepat.
A. Pengetahuan Dasar Damkar
Sebelum kita dapat melakukan usaha penanggulangan kebakaran, adalah wajar apabila kita perlu untuk mengetahui dan mengenal terlebih dahulu apa dan bagaimanakah kebakaran itu. Setelah itu maka kita akan menyadari bahwa peristiwa/masalah kebakaran sesungguhnya merupakan masalah yang menjadi ancaman bagi semua orang, baik disadari ataupun tidak.
Kebakaran di Indonesia dibagi menjadi tiga kelas, yaitu:
1. Kelas A
Kebakaran yang disebabkan oleh benda-benda padat, misalnya kertas, kayu, plastik, karet, busa dan lain-lainnya. Media pemadaman kebakaran untuk kelas ini berupa: air, pasir, karung goni yang dibasahi, dan Alat Pemadam Kebakaran (APAR) atau racun api tepung kimia kering.
2. Kelas B
Kebakaran yang disebabkan oleh benda-benda mudah terbakar berupa cairan, misalnya bensin, solar, minyak tanah, spirtus, alkohol dan lain-lainnya. Media pemadaman kebakaran untuk kelas ini berupa: pasir dan Alat Pemadam Kebakaran (APAR) atau racun api tepung kimia kering. Dilarang memakai air untuk jenis ini karena berat jenis air lebih berat dari pada berat jenis bahan di atas sehingga bila kita menggunakan air maka kebakaran akan melebar kemana-mana.
3. Kelas C
Kebakaran yang disebabkan oleh listrik. Media pemadaman kebakaran untuk kelas ini berupa: Alat Pemadam Kebakaran (APAR) atau racun api tepung kimia kering. Matikan dulu sumber listrik agar kita aman dalam memadamkan kebakaran
B. Prinsip Pemadaman Kebakaran
Kebakaran adalah suatu nyala api, baik kecil atau besar pada tempat yang tidak kita hendaki, merugikan dan pada umumnya sukar dikendalikan. Api terjadi karena persenyawaan dari:
• Sumber panas, seperti energi elektron (listrik statis atau dinamis), sinar matahari, reaksi kimia dan perubahan kimia.
• Benda mudah terbakar, seperti bahan-bahan kimia, bahan bakar, kayu, plastik dan sebagainya.
• Oksigen (tersedia di udara)
Apabila ketiganya bersenyawa maka akan terjadi api. Dalam pencegahan terjadinya kebakaran kita harus bisa mengontrol Sumber panas dan Benda mudah terbakar, misalnya Dilarang merokok ketika Sedang melakukan pengisian bahan Bakar, Menyimpan barang-barang yang mudah terbakar ditempat aman, dan sebagainya.
Apabila sudah terjadi kebakaran maka langkah kita adalah menghilangkan adanya Oksigen dalam kebakaran tersebut. Contoh mudahnya seperti ketika kita menghidupkan lilin, lalu coba kita tutup dengan gelas maka api pada lilin tersebut akan mati karena oksigen yang berada di luar gelas tidak dapat masuk dan oksigen yang berada dalam gelas berubah menjadi Karbon Dioksida (CO2) yang mematikan api. Ketika kita memadamkan kebakaran dengan mengunakan APAR, karung goni yang basah dan pasir yang terjadi adalah kita mengisolasi adanya oksigen dalam api tersebut asal semua permukaan api tertutupi oleh ketiga media pemadaman tersebut dan api akan mati seperti lilin yang kita tutup memakai gelas tadi. Bila kita menggunakan air sebagai media pemadaman maka terjadi reaksi pendinginan panas dan isolasi oksigen dari kebakaran tersebut.
C. Peralatan Pencegahan Kebakaran
• APAR / Fire Extinguishers / Racun Api
Peralatan ini merupakan peralatan reaksi cepat yang multi guna karena dapat dipakai untuk jenis kebakaran A,B dan C. Peralatan ini mempunyai berbagai ukuran beratnya, sehingga dapat ditempatkan sesuai dengan besar-kecilnya resiko kebakaran yang mungkin timbul dari daerah tersebut, misalnya tempat penimbunan bahan bakar terasa tidak rasional bila di situ kita tempatkan racun api dengan ukuran 1,2 Kg dengan jumlah satu tabung. Bahan yang ada dalam tabung pemadam api tersebut ada yang dari bahan kimia kering, foam / busa dan CO2, untuk Halon tidak diperkenankan dipakai di Indonesia.
• Hydran
Ada 3 jenis hydran, yaitu hydran gedung, hydran halaman dan hydran kota, sesuai namanya hydran gedung ditempatkan dalam gedung, untuk hydran halaman ditempatkan di halaman, sedangkan hydran kota biasanya ditempatkan pada beberapa titik yang memungkinkan Unit Pemadam Kebakaran suatu kota mengambil cadangan air.
• Detektor Asap / Smoke Detector
Peralatan yang memungkinkan secara otomatis akan memberitahukan kepada setiap orang apabila ada asap pada suatu daerah maka alat ini akan berbunyi, khusus untuk pemakaian dalam gedung.
• Fire Alarm
Peralatan yang dipergunakan untuk memberitahukan kepada setiap orang akan adanya bahaya kebakaran pada suatu tempat
• Sprinkler
Peralatan yang dipergunakan khusus dalam gedung, yang akan memancarkan air secara otomatis apabila terjadi pemanasan pada suatu suhu tertentu pada daerah di mana ada sprinkler tersebut
D. Pencegahan Kebakaran
Setelah kita mengetahui pengklasifikasian, prinsip pemadaman dan perlengkapan pemadaman suatu kebakaran maka kita harus bisa mengelola kesemuanya itu menjadi suatu sistem manajemen/pengelolaan pencegahan bahaya kebakaran.
Kita mengambil contoh dari pengelolaan pencegahan kebakaran pada bangunan tinggi.
1. Identifikasi bahaya yang dapat mengakibatkan kebakaran pada gedung itu.
a. Bahan Mudah Terbakar, seperti karpet, kertas, karet, dan lain-lain
b. Sumber Panas, seperti Listrik, Listrik statis, nyala api rokok dan lain-lain
2. Penilaian Resiko
Resiko tinggi karena merupakan bangunan tinggi yang banyak orang
3. Monitoring
Inspeksi Listrik, Inspeksi Bangunan, Inspeksi Peralatan Pemadam Kebakaran, Training, Fire Drill / Latihan Kebakaran dan lain-lain
4. Recovery / Pemulihan
Emergency Response Plan / Rencana Tindakan Tanggap Darurat, P3K, Prosedur-Prosedur, dan lain-lain.
Kita semua tahu bahwa untuk dapat menghadapi dan mengalahkan musuh, kita harus tahu segala hal tentang musuh kita kekuatan, kelemahan, strategi perang, dan lainnya. Memiliki gambaran tentang kemungkinan aksi yang akan dilakukan oleh musuh, membuat kita dapat membuat rencana untuk menga-tasi aksi tersebut, dan lebih baik lagi melakukan pencegahan agar aksi tersebut tidak dapat berjalan. Demikian juga apabila kita mengahadapi masalah kebakaran, kita harus tahu tentang bagaimanakah api dapat terjadi, bagaimana api dapat menyebar, apa yang dapat menimbulkan api, bagaimana mencegah api timbul, dan banyak lagi, sehingga kita siap menghadapi musuh kita semua, yaitu kebakaran.
a. Pembakaran
Pembakaran dan api adalah dua kata yang akan selalu berhubungan dan dalam ilmu kebakaran dua kata tersebut sudah menjadi tak terpisahkan.
Pembakaran/api adalah peristiwa proses reaksi oksidasi cepat yang biasanya menghasilkan panas dan cahaya (energi panas dan energi cahaya). Selanjutnya apakah reaksi oksidasi itu?; Dalam konteks masalah kebakaran dapat dikatakan bahwa reaksi oksidasi adalah reaksi pengikatan unsur oksigen oleh reduktor/pereduksi (bahan bakar). Sedang dalam konteks lebih luas, dalam ilmu kimia, reaksi oksidasi didefinisikan sebagai reaksi pemberian elektron oleh oksidator/ pengoksidasi kepada reduktor/pereduksi.
Di atas telah disebutkan bahwa pembakaran/api adalah peristiwa oksidasi cepat, berarti ada reaksi oksidasi lambat. Untuk rekasi oksidasi lambat sebagai contohnya adalah peristiwa perkaratan besi. Satu hal yang perlu di pahami adalah bahwa hanya gas yang dapat terbakar. Jadi bahan bakar dengan bentuk fisik padatan dan cairan sebelum ia dapat terbakar ia harus dirubah dahulu ke bentuk fisik gas. Untuk bahan bakar padat harus mengalami pyrolysis, sehingga ter-bentuk gas-gas yang lebih seder-hana yang akan terbakar. Sedang untuk bahan bakar bentuk cairan oleh panas akan diuapkan, lalu uap bahan bakar tadi yang akan terbakar.
Kembali ke masalah kebakaran ada peristiwa yang sering terjadi seiring dengan kebakaran, yaitu ledakan/explosion. Ledakan/explosion adalah peristiwa oksidasi yang sangat cepat.
b.
Nyala Api
Nyala api sesungguhnya adalah gas hasil reaksi dengan panas dan cahaya yang ditimbulkannya. Warna dari nyala api ditentukan oleh bahan-bahan yang bereaksi (terbakar). Warna yang dihasilkan oleh gas hidrokarbon, yang bereaksi sempurna dengan udara (oksigen) adalah biru terang. Nyala api akan lebih mudah terlihat ketika karbon dan padatan lainnya atau liquid produk antara dihasilkan oleh pembakaran tidak sempurna naik dan berpijar akibat temperatur dengan warna merah, jingga, kuning, atau putih, tergantung dari tem-peraturnya.
c. BARA API
Bara api memiliki ciri khas yaitu tidak terlihatnya nyala api, akan tetapi adanya bahan-bahan yang sangat panas pada permukaan dimana pembakaran terjadi. Contoh yang baik untuk bara api adalah batu bara. Warna dari bara api pada permukaan benda berhubungan dengan temperaturnya.
bahwa pembakaran/api adalah suatu reaksi oksidasi, jadi harus ada oksidator/pengoksidasi dan reduktor/ pereduksi/ bahan yang dioksidasi. Dari sini kita telah mendapatkan dua komponen peristiwa/reaksi pembakaran/api, yaitu oksidator yaitu oksigen dan reduktor di sini adalah bahan bakar. Dalam kehidupan sehari-hari kita mengetahui bahwa suatu benda yang dapat terbakar (bahan bakar) dalam kondisi normal tidaklah terbakar, baru apabila kita panaskan untuk beberapa lama dia akan dapat terbakar. Ini juga berarti kita telah mendapatkan satu lagi komponen pembakaran/api, dari apa yang sudah umum kita ketahui.
Dalam ilmu kebakaran ketiga komponen tersebut dikenal dengan segitiga api, yaitu sebuah bangun dua dimensi berbentuk segitiga sama sisi. Dimana masing-masing sisi mewakili satu komponen kebakaran/api, yaitu: Oksigen, Panas dan Bahan bakar.
suatu peristiwa/reaksi pembakaran akan dapat terjadi apabila ketiga komponen tersebut berada dalam keadaan keseimbangannya. Kese-imbangan dimaksud di sini bukanlah sama dalam jumlah atau banyaknya, akan tetapi suatu bahan akan dapat terbakar apabila kondisi di mana terjadi/akan terjadi pembakaran/api memiliki perbandingan tertentu antara bahan dimaksud dengan oksigen yang harus tersedia. Selain itu kondisi temperatur bahan dan atau lingkungan reaksi memiliki temperatur (yang menggambarkan tingkat kepanasan suatu benda) tertentu juga.
1. OKSIGEN
Pada sisi pertama dari segitiga adalah oksigen. Oksigen adalah gas yang tidak dapat terbakar (nonflam-meable gas) dan juga merupakan satu kebutuhan untuk kehidupan yang sangat mendasar. Di atas permukaan laut, atmosfir kita me-miliki oksigen dengan konsentrasi sekitar 21%. Sedang untuk ter-jadinya pembakaran/api oksigen dibutuhkan minimal 16%. Kembali lagi, oksigen itu sendiri tidak terbakar, ia hanya mendukung proses pembakaran.
2. PANAS
Sisi kedua adalah panas. Panas adalah suatu bentuk energi yang dibutuhkan untuk meningkatkan temperatur suatu benda/ bahan bakar sampai ketitik dimana jumlah uap bahan bakar tersebut tersedia dalam jumlah cukup untuk dapat terjadi penyalaan.
• Sumber-sumber Panas
Sumber-sumber panas/energi panas sangatlah beragam, dapat disebutkan disini adalah Arus listrik. Panas akibat arus listrik dapat terjadi akibat adanya hambatan terhadap aliran arus, kelebihan beban muatan, hubungan pendek, dan lain-lain.
Panas yang dihasilkan oleh kerja mekanik biasanya dari gesekan dua benda atau gas yang diberi tekanan tinggi.
Reaksi kimia
Pada reaksi kimia, hubungan dengan panas, terdapat dua macam reaksi yaitu reaksi endotermis dan eksotermis. Reaksi endotermis adalah reaksi yang membutuhkan panas untuk dapat berjalan, sedang rekasi eksotermis adalah kebalikannya yaitu menghasilkan panas dan reaksi inilah yang merupakan sumber panas. Reaksi kimia disini tidak hanya terbatas pada reaksi perubahan atau pembentukan senyawa baru, akan tetapi dapat juga dalam bentuk proses pencampuran dan atau pelarutan.
Radiasi matahari Sinar matahari dapat menjadi sumber panas yang dapat menyebabkan kebakaran apabila intensitasnya cukup besar, atau di ter/difokuskan oleh suatu alat optik.
• Cara-cara Perpindahan Panas
Panas dapat berpindah dan dalam suatu kejadian kebakaran perpindahan panas ini harus mendapat perhatian yang besar, karena apabila perpindahan panas tidak terkontrol akan dapat mengakibatkan kebakaran meluas dan atau mengakibatkan kebakaran lain. Perpindahan panas ini dapat terjadi dengan berbagai cara, yaitu: konduksi, konveksi dan radiasi; dan khusus dalam masalah kebakaran ada juga Penyulutan langsung.
Ø Konduksi
Konduksi adalah perpindahan panas yang terjadi secara molekuler, jadi panas berpindah di dalam suatu bahan penghantar (konduktor) dari satu titik ketitik lain yang memiliki temperatur lebih rendah. Sebagai gambaran adalah apabila kita memanaskan salah satu ujung sebuah tongkat besi maka lambat laun panas akan berpindah keujung lainnya, sedangkan tongkat tersebut tidak berubah bentuk.
Ø Konveksi
Konveksi adalah perpindahan panas yang berhubungan dengan bahan fluida atau bahan yang dapat mengalir dalam bentuk gas atau cairan. Pada konveksi panas berpindah dengan berpindahnya bahan penghantar, atau lebih tepat bahan pembawa panas tersebut. Sebagai gambaran adalah apabila terjadi kebakaran di lantai bawah sebuah bangunan bertingkat, maka panas akan dibawa oleh asap atau gas hasil pembakaran yang panas ke lantai di atasnya.
Ø Radiasi
Perpindahan panas dengan cara radiasi tidak membutuhkan suatu bahan penghantar seperti pada dua perpindahan panas sebelumnya. Pada radiasi panas berpindah secara memancar, jadi panas dipancarkan segala arah dari suatu sumber panas. Sebagai contohnya adalah radiasi sinar matahari, yang kita semua tahu bahwa dari jarak yang jutaan kilometer melalui ruang kosong di antariksa panas matahari dapat sampai ke bumi.
3. BAHAN BAKAR
Sisi yang lain (ketiga) adalah bahan bakar. Berbeda dengan apa yang umum disebut sebagai bahan bakar oleh setiap orang, bahan bakar dalam hubungannya dengan ilmu kebakaran adalah setiap benda, bahan atau material yang dapat terbakar dianggap sebagai bahan bakar. Apabila kita perhatikan, maka akan kita dapati bahwa hidup kita selalu dikelilingi oleh bahan bakar. Oleh karena itu adalah sesuatu yang wajib bagi kita untuk selalu siap siaga menghadapi ancaman bahaya kebakaran.
Ada beberapa istilah yang perlu diketahui dalam hubungannya dengan bahan bakar, yaitu:
Flash point: temperatur terendah pada saat dimana suatu bahan bakar cair menghasilkan uap dalam jumlah yang cukup untuk menghasilkan nyala sesaat dari campuran bahan bakar dan udara (oksigen).
Fire point : temperatur (akibat pemanasan) dimana suatu bahan bakar cair dapat memproduksi uap dengan cukup cepat sehingga memungkinkan terjadinya pembakaran yang kontinyu/terus menerus.
Nyala api sesungguhnya adalah gas hasil reaksi dengan panas dan cahaya yang ditimbulkannya. Warna dari nyala api ditentukan oleh bahan-bahan yang bereaksi (terbakar). Warna yang dihasilkan oleh gas hidrokarbon, yang bereaksi sempurna dengan udara (oksigen) adalah biru terang. Nyala api akan lebih mudah terlihat ketika karbon dan padatan lainnya atau liquid produk antara dihasilkan oleh pembakaran tidak sempurna naik dan berpijar akibat temperatur dengan warna merah, jingga, kuning, atau putih, tergantung dari tem-peraturnya.
c. BARA API
Bara api memiliki ciri khas yaitu tidak terlihatnya nyala api, akan tetapi adanya bahan-bahan yang sangat panas pada permukaan dimana pembakaran terjadi. Contoh yang baik untuk bara api adalah batu bara. Warna dari bara api pada permukaan benda berhubungan dengan temperaturnya.
bahwa pembakaran/api adalah suatu reaksi oksidasi, jadi harus ada oksidator/pengoksidasi dan reduktor/ pereduksi/ bahan yang dioksidasi. Dari sini kita telah mendapatkan dua komponen peristiwa/reaksi pembakaran/api, yaitu oksidator yaitu oksigen dan reduktor di sini adalah bahan bakar. Dalam kehidupan sehari-hari kita mengetahui bahwa suatu benda yang dapat terbakar (bahan bakar) dalam kondisi normal tidaklah terbakar, baru apabila kita panaskan untuk beberapa lama dia akan dapat terbakar. Ini juga berarti kita telah mendapatkan satu lagi komponen pembakaran/api, dari apa yang sudah umum kita ketahui.
Dalam ilmu kebakaran ketiga komponen tersebut dikenal dengan segitiga api, yaitu sebuah bangun dua dimensi berbentuk segitiga sama sisi. Dimana masing-masing sisi mewakili satu komponen kebakaran/api, yaitu: Oksigen, Panas dan Bahan bakar.
suatu peristiwa/reaksi pembakaran akan dapat terjadi apabila ketiga komponen tersebut berada dalam keadaan keseimbangannya. Kese-imbangan dimaksud di sini bukanlah sama dalam jumlah atau banyaknya, akan tetapi suatu bahan akan dapat terbakar apabila kondisi di mana terjadi/akan terjadi pembakaran/api memiliki perbandingan tertentu antara bahan dimaksud dengan oksigen yang harus tersedia. Selain itu kondisi temperatur bahan dan atau lingkungan reaksi memiliki temperatur (yang menggambarkan tingkat kepanasan suatu benda) tertentu juga.
1. OKSIGEN
Pada sisi pertama dari segitiga adalah oksigen. Oksigen adalah gas yang tidak dapat terbakar (nonflam-meable gas) dan juga merupakan satu kebutuhan untuk kehidupan yang sangat mendasar. Di atas permukaan laut, atmosfir kita me-miliki oksigen dengan konsentrasi sekitar 21%. Sedang untuk ter-jadinya pembakaran/api oksigen dibutuhkan minimal 16%. Kembali lagi, oksigen itu sendiri tidak terbakar, ia hanya mendukung proses pembakaran.
2. PANAS
Sisi kedua adalah panas. Panas adalah suatu bentuk energi yang dibutuhkan untuk meningkatkan temperatur suatu benda/ bahan bakar sampai ketitik dimana jumlah uap bahan bakar tersebut tersedia dalam jumlah cukup untuk dapat terjadi penyalaan.
• Sumber-sumber Panas
Sumber-sumber panas/energi panas sangatlah beragam, dapat disebutkan disini adalah Arus listrik. Panas akibat arus listrik dapat terjadi akibat adanya hambatan terhadap aliran arus, kelebihan beban muatan, hubungan pendek, dan lain-lain.
Panas yang dihasilkan oleh kerja mekanik biasanya dari gesekan dua benda atau gas yang diberi tekanan tinggi.
Reaksi kimia
Pada reaksi kimia, hubungan dengan panas, terdapat dua macam reaksi yaitu reaksi endotermis dan eksotermis. Reaksi endotermis adalah reaksi yang membutuhkan panas untuk dapat berjalan, sedang rekasi eksotermis adalah kebalikannya yaitu menghasilkan panas dan reaksi inilah yang merupakan sumber panas. Reaksi kimia disini tidak hanya terbatas pada reaksi perubahan atau pembentukan senyawa baru, akan tetapi dapat juga dalam bentuk proses pencampuran dan atau pelarutan.
Radiasi matahari Sinar matahari dapat menjadi sumber panas yang dapat menyebabkan kebakaran apabila intensitasnya cukup besar, atau di ter/difokuskan oleh suatu alat optik.
• Cara-cara Perpindahan Panas
Panas dapat berpindah dan dalam suatu kejadian kebakaran perpindahan panas ini harus mendapat perhatian yang besar, karena apabila perpindahan panas tidak terkontrol akan dapat mengakibatkan kebakaran meluas dan atau mengakibatkan kebakaran lain. Perpindahan panas ini dapat terjadi dengan berbagai cara, yaitu: konduksi, konveksi dan radiasi; dan khusus dalam masalah kebakaran ada juga Penyulutan langsung.
Ø Konduksi
Konduksi adalah perpindahan panas yang terjadi secara molekuler, jadi panas berpindah di dalam suatu bahan penghantar (konduktor) dari satu titik ketitik lain yang memiliki temperatur lebih rendah. Sebagai gambaran adalah apabila kita memanaskan salah satu ujung sebuah tongkat besi maka lambat laun panas akan berpindah keujung lainnya, sedangkan tongkat tersebut tidak berubah bentuk.
Ø Konveksi
Konveksi adalah perpindahan panas yang berhubungan dengan bahan fluida atau bahan yang dapat mengalir dalam bentuk gas atau cairan. Pada konveksi panas berpindah dengan berpindahnya bahan penghantar, atau lebih tepat bahan pembawa panas tersebut. Sebagai gambaran adalah apabila terjadi kebakaran di lantai bawah sebuah bangunan bertingkat, maka panas akan dibawa oleh asap atau gas hasil pembakaran yang panas ke lantai di atasnya.
Ø Radiasi
Perpindahan panas dengan cara radiasi tidak membutuhkan suatu bahan penghantar seperti pada dua perpindahan panas sebelumnya. Pada radiasi panas berpindah secara memancar, jadi panas dipancarkan segala arah dari suatu sumber panas. Sebagai contohnya adalah radiasi sinar matahari, yang kita semua tahu bahwa dari jarak yang jutaan kilometer melalui ruang kosong di antariksa panas matahari dapat sampai ke bumi.
3. BAHAN BAKAR
Sisi yang lain (ketiga) adalah bahan bakar. Berbeda dengan apa yang umum disebut sebagai bahan bakar oleh setiap orang, bahan bakar dalam hubungannya dengan ilmu kebakaran adalah setiap benda, bahan atau material yang dapat terbakar dianggap sebagai bahan bakar. Apabila kita perhatikan, maka akan kita dapati bahwa hidup kita selalu dikelilingi oleh bahan bakar. Oleh karena itu adalah sesuatu yang wajib bagi kita untuk selalu siap siaga menghadapi ancaman bahaya kebakaran.
Ada beberapa istilah yang perlu diketahui dalam hubungannya dengan bahan bakar, yaitu:
Flash point: temperatur terendah pada saat dimana suatu bahan bakar cair menghasilkan uap dalam jumlah yang cukup untuk menghasilkan nyala sesaat dari campuran bahan bakar dan udara (oksigen).
Fire point : temperatur (akibat pemanasan) dimana suatu bahan bakar cair dapat memproduksi uap dengan cukup cepat sehingga memungkinkan terjadinya pembakaran yang kontinyu/terus menerus.
- TETRAHEDRON
API
Pada perkembangan selanjutnya,ditemukan bahwa selain ketiga komponen seperti yang dimaksud dalam segitiga api ada lagi komponen keempat dalam proses pembakaran yang dibutuhkan oleh proses pembakaran untuk mendukung kesinambungannya dan juga untuk bertambah besar, yaitu rantai reaksi kimia antara bahan bakar dengan bahan pengoksidasi/oksidator. Seiring dengan menyalanya api, molekul bahan bakar juga berkurang berubah menjadi molekul yang lebih sederhana. Dengan berlanjutnya proses pembakaran, naiknya temperatur menyebabkan oksigen tambahan terserap ke area nyala api. Lebih banyak molekul bahan bakar akan terpecah, bergabung ke rantai reaksi, mencapai titik nyalanya, mulai menyala, menyebabkan naiknya temperatur, menyeap oksigen tambahan, dan melanjutkan rantai reaksi. Proses rantai reaksi ini akan berlanjut sampai seluruh substansi/bahan yang terkait mencapai area yang lebih dingin dinyala api. Selama tersedia bahan bakar dan oksigen dalam jumlah yang cukup, dan selama temperatur mendukung,reaksi rantai akan meningkatkan reaksi pembakaran. Sehingga dengan demikian segitiga api tadi dengan adanya faktor rantai reaksi kimia, yang juga termasuk komponen pembakaran, berubah menjadi satu bangun tiga dimensi segitiga piramida (tetrahedron).
b. GAS BERACUN HASIL PEMBAKARAN
Selain bahaya panas tinggi ternyata ada satu bahaya yang menjadi penyebab utama kematian dalam peristiwa kebakaran, yaitu asap. Mengapa asap menjadi penyebab utama? Hal ini dikarenakan asap mengandung bermacam-macam gas beracun yang dihasilkan oleh peristiwa pembakaran.
Beberapa gas beracun yang paling banyak dan selalu ada pada peristiwa kebakaran dapat dilihat dibawah ini.
• Karbon monoksida (Carbon monoxide)
Karbon monoksida (CO) adalah pembunuh terbesar dalam peristiwa kebakaran karena tingkat kehadirannya yang sangat tinggi dan juga cepatnya ia mencapai konsentrasi mematikan pada peristiwa kebakaran. Karbon monoksida adalah hasil produksi dari pembakaran tidak sempurna yang dihasilkan dari pembakaran senyawa-senyawa organic dan berbagai bentuk karbon. Sering juga kematian akibat karbon monoksida terjadi akibat masuknya asap knalpot ke kabin mobil.
Karbon monoksida berbahaya karena ia adalah gas yang tidak berbau, tidak berwarna, dan tidak terlihat. Gas ini mematikan pada konsentrasi 1,28 persen volume dalam udara dalam 1 sampai 3 menit; 0,64 persen mematikan dalam 10 sampai 15 menit; 0,32 persen mematikan dalam 30 sampai 60 menit, dan 0,16 persen mematikan dalam waktu 2 jam. Pada konsentrasi 0,05 persen gas ini tetap menyimpan bahaya.
• Karbon dioksida (Carbon dioxide)
Karbon dioksida (Carbon dioxide) adalah hasil dari pembakaran sempurna senyawa organic atau senyawa karbon. Bertambahnya konsentrasi karbon dioksida akan mengakibatkan meningkatnya kecepatan pernafasan; sampai di mana tubuh tidak mampu lagi. Kegagalan pernafasan akhirnya akan terjadi. Karbon dioksida dalam jumlah yang sangat banyak dapat mengakibatkan sesak nafas karena kekurangan oksigen dalam darah, selain itu juga dapat berfungsi sebagai bahan pemadam api. Konsentrasi lebih dari 5 persen di lingkungan dapat merupakan tanda bahaya,bukan karena keberadaannya akan tetapi karena kondisi tersebut adalah kondisi yang jauh dari kondisi normal.
• Hidrogen sianida (Hydrogen cyanide)
Walau Hidrogen sianida (HCN) jauh lebih beracun dari Karbon monoksida tetapi dalam kebakaran,biasanya, jumlahnya sangat kecil. Pada konsentrasi 100 ppm dapat menyebabkan kematian dalam waktu 30 sampai 60 menit. Hidrogen sianida dihasikan dari pembakaran senyawan hirokarbon terklorinasi di udara, plastik, kulit karet, sutra, wool, atau juga kayu. Seperti halnya karbon monoksida hydrogen sianida lebih ringan dari udara sehingga tingkat bahayanya lebih tinggi pada kebakaran dalam ruangan, dibanding kebakaran luar ruangan.
• Phosgene (COCl2) Phosgene juga dihasilkan pada dekomposisi atau pembakaran senyawa hidrokarbon terklorinasi, seperti karbon tetraklorida, Freon, atau etilene diklorida. Phosgene beracun dan berbahaya pada konsentrasi yang sangat kecil sekalipun. Konsntrasi 25 ppm dapat mematikan dalam waktu 30 sampai 60 menit.
• Hidrogen klorida (Hydrogen Chloride) Hidrogen klorida (HCl) dihasilkan oleh pembakaran bahan-bahan yang mengandung klorin. Walau tidak beracun seperti hydrogen sianida ataupun phosgene, HCl berbahaya apabila kita berada dalam waktu yang cukup lama di lingkungan yang terdapat gas ini.
E. TAHAPAN KEBAKARAN DALAM RUANGAN
Pada umumnya kebakaran dalam ruangan dengan terbagi dalam tiga tahapan. Masing-masing tahapan memiliki ciri-ciri karaktersitik dan efeknya berhubungan dengan bahan yang terbakar yang berbeda-beda. Lama dari masing-masing tahapan bervariasi tergantung keadaan dari penyulutan, bahan bakar, dan ventilasi, akan tetapi secara keseluruhan tahapannya adalah kebakaran awal kebakaran bebas kebakaran menyurut.
a. Kebakaran Tahap Awal Ini adalah tahapan awal dari suatu kebakaran setelah terjadi penyulutan.
Nyala api masih terbatas dan pembakaran dengan lidah api terlihat. Konsentrasi Oksigen dalam ruangan masih dalam kondisi normal (21%) dan temperatur dalam ruangan secara keseluruhan belum meningkat. Gas panas hasil pembakaran dalam betuk kepulan bergerak naik dari titik nyala. Dalam kepulan gas panas terkandung bermacam-macam material seperti deposit karbon (jelaga) ataupun padatan lain, uap air, H2S, CO2, CO, dan gas beracun lainnya,semuanya tergantung dari jenis bahan bakar atau bahan yang terbakar. Panas akan dihantar secara konveksi oleh material-material tadi ke atas ruangan dan mendorong oksigen kebawah yang berarti ke titik nyala untuk mendukung pembakaran selanjutnya.
b. Tahap Penyalaan
Kebakaran akan menghebat sejalan dengan bertambahnya bahan yang terbakar. Konveksi, konduksi, dan kontak langsung memperluas perambatan api dan keluar dari bahan bahakar awal sampai bahan didekatnya mencapai temperatur penyalaannya dan mulai terbakar. Radiasi panas dari nyala api mulai menyebabkan bahan bahan lain mencapai titik nyalanya, memperluas kebakaran kesamping. Kecepatan perluasan kebakaran kesamping tergantung dari berapa dekat bahan di dekatnya dan juga susunan bahannya. Gas panas yang dihasilkan pembakaran berkumpul di langit-langit ruangan membentuklapisan asap. Temperatur dari lapisan asp ini meningkat. Lapisan yang lebih tinggi di ruangan tersebut memiliki konsentrasi oksigen paling rendah; temperatur tinggi; dan jelaga, asap, dan produk pirolisis yang belum terbakar sempurna pada saat itu sangatlah berbeda dengan kondisi di dekat lantai ruangan. Pada daerah dekat lantai lapisan udaranya masih relatif dingin dan mengandung udara segar (konsentrasi oksigen mendekati normal) yang bercampur dengan hasil pembakaran. Kemungkinan untuk hidup masih cukup di dalam ruangan apabila seseorang bertahan pada posisi merendah pada lapisan dingin dan tidak menghirup gas di bagian atas. Ketika lapisan panas mencapai titik kritisnya pada + 600oC (1100oF), ini sudah cukup untuk menghasilkan radiasi panas yang menyebabkan bahan bakar lainnya (seperti karpet dan furnitur) di dalam ruang mencapai titik nyalanya. Pada saat ini seisi ruangan akan menyala secara serentak, dan ruangan dikatakan mengalami flashover. Saat ini terjadi, temperatur seluruh ruangan mencapai titik maksimalnya dan kemungkinan hidup dalam berada di dalam ruangan ini untuk lebih dari beberapa detik sangat tidak mungkin. Flashover oleh ahli ilmu kebakaran didefinisikan sebagai proses pengembangan, radiasi, dan pembakaran lengkap dari semua bahan bakar dalam suatu ruangan.
Api/kebakaran adalah suatu aksi kesetimbangan kimia antara bahan bakar, udara, dan temperatur (bahan bakar oksigen - panas). Apabila ventilasi terbatas, pertumbuhan api akan lambat, peningkatan temperatur akan lebih bertahap, asap akan dihasilkan lebih banyak, dan penyalaan gas panas akan tertunda sampai didapat tambahan udara (oksigen) yang cukup.
c. Tahap Api Mengecil
Bahan bakar habis dan nyala api secara bertahap akan berkurang dan berkurang. Apabila konsentrasi oksigen dibawah 16%, nyala api dari pembakaran akan berhenti meskipun masih terdapat bahan bakar yang belum terbakar. Pembakaran yang terjadi adalah pembakaran tanpa nyala api. Temperatur masih tinggi di dalam ruangan, tergantung dari bahan penyekat dan ventilasi dari ruangan tersebut. Beberapa bahan masih mengalami pirolisis atau terbakar tidak sempurna menghasilkan gas karbon monoksida dan gas bahan bakar lain, jelaga, dan bahan bakar lain yang terkandung dalam asap. Apabila ruangan tidak memiliki ventilasi yang cukup, maka akan terbentuk campuran gas yang dapat terbakar. Maka apabila ada sumber penyalaan yang baru, akan dapat terjadi kebakaran kedua diruangan tersebut, sering disebut backdraft atau ledakan asap
Tidak ada komentar:
Posting Komentar